Abstract

AbstractThe carrier tunneling dynamics of self-assembled InAs quantum dots (QD) is studied using time-resolved conductance measurements of a nearby two-dimensional electron gas (2DEG). The coupling strength (tunneling time) between the QDs and the 2DEG is adjusted by different thicknesses of the spacer layers. We demonstrate a strong influence of charged QDs on the conductance on the 2DEG, even for very weak coupling, where standard C-V spectroscopy is unsuitable to investigate the electronic structure of these QDs.KeywordsIII-V semiconductorsindium compoundsself-assemblysemiconductor quantum dotstunnellingtwo-dimensional electron gas

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.