Abstract

This paper presents a 28-GHz CMOS four-element phased-array transceiver chip for the fifth-generation mobile network (5G) new radio (NR). The proposed transceiver is based on the local-oscillator (LO) phase-shifting architecture, and it achieves quasi-continuous phase tuning with less than 0.2-dB radio frequency (RF) gain variation and 0.3°C phase error. Accurate beam control with suppressed sidelobe level during beam steering could be supported by this work. At 28 GHz, a single-element transmitter-mode output ${{\mathrm {P}}_{\mathrm {1\,dB}}}$ of 15.7 dBm and a receiver-mode noise figure (NF) of 4.1 dB are achieved. The eight-element transceiver modules developed in this work are capable of scanning the beam from −50° to +50° with less than −9-dB sidelobe level. A saturated equivalent isotropic radiated power (EIRP) of 39.8 dBm is achieved at 0° scan. In a 5-m over-the-air measurement, the proposed module demonstrates the first 512 quadrature amplitude modulation (QAM) constellation in the 28-GHz band. A data stream of 6.4 Gb/s in 256-QAM could be supported within a beam angle of ±50°. The achieved maximum data rate is 15 Gb/s in 64-QAM. The proposed transceiver chip consumes 1.2 W/chip in transmitter mode and 0.59 W/chip in receiver mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.