Abstract
A digital compensation method and key circuits are presented that allow fractional-N synthesizers to be modulated at data rates greatly exceeding their bandwidth. Using this technique, a 1.8-GHz transmitter capable of digital frequency modulation at 2.5 Mb/s can be achieved with only two components: a frequency synthesizer and a digital transmit filter. A prototype transmitter was constructed to provide proof of concept of the method; its primary component is a custom fractional-N synthesizer fabricated in a 0.6-/spl mu/m CMOS process that consumes 27 mW. Key circuits on the custom IC are an on-chip loop filter that requires no tuning or external components, a digital MASH /spl Sigma/-/spl Delta/ modulator that achieves low power operation through pipelining, and an asynchronous, 64-modulus divider (prescaler). Measurements from the prototype indicate that it meets performance requirements of the digital enhanced cordless telecommunications (DECT) standard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.