Abstract
This work presents a resistive frequency-locked loop on-chip oscillator with a double chopper stabilization technique to improve the temperature stability and long-term stability. The negative feedback topology achieves both a low temperature coefficient (TC) and good energy efficiency. A prototype device is fabricated in 0.18-μm CMOS technology and exhibits a 24.7 ppm/°C temperature stability and 2.73 ppm long-term stability while consuming just 293 nW under an oscillation frequency of 250 kHz. The use of the double chopper stabilization technique effectively eliminates the TC-sensitive non-idealities, including the current mismatch and offset voltage of the amplifier. Moreover, the low-frequency flicker noise is also mitigated; resulting in a 16X improvement in the long-term stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.