Abstract
A very simple and fast Mach-Zehnder electro-optic modulator based on a p-i-n configuration, operating at λ = 1.55 μm, has been fabricated at 170 °C using the low cost technology of hydrogenated amorphous silicon (a-Si:H). In spite of the device simplicity, refractive index modulation was achieved through the free carrier dispersion effect resulting in characteristic rise and fall times of ~2.5 ns. By reverse biasing the p-i-n device, the voltage-length product was estimated to be V(π)∙L(π) = 40 V∙cm both from static and dynamic measurements. Such bandwidth performance in as-deposited a-Si:H demonstrates the potential of this material for the fabrication of fast active photonic devices integrated on standard microelectronic substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.