Abstract
BackgroundPancreatic carcinoma is one of the most lethal human cancers. In patients with resectable tumors, surgery followed by adjuvant chemotherapy is the only curative treatment. However, the 5-year survival is 20%. Because of a strong metastatic propensity, neoadjuvant chemotherapy is being tested in randomized clinical trials. In this context, improving the selection of patients for immediate surgery or neoadjuvant chemotherapy is crucial, and high-throughput molecular analyses may help; the present study aims to address this.MethodsClinicopathological and gene expression data of 695 pancreatic carcinoma samples were collected from nine datasets and supervised analysis was applied to search for a gene expression signature predictive for overall survival (OS) in the 601 informative operated patients. The signature was identified in a learning set of patients and tested for its robustness in a large independent validation set.ResultsSupervised analysis identified 1400 genes differentially expressed between two selected patient groups in the learning set, namely 17 long-term survivors (LTS; ≥ 36 months after surgery) and 22 short-term survivors (STS; dead of disease between 2 and 6 months after surgery). From these, a 25-gene prognostic classifier was developed, which identified two classes (“STS-like” and “LTS-like”) in the independent validation set (n = 562), with a 25% (95% CI 18–33) and 48% (95% CI 42–54) 2-year OS (P = 4.33 × 10–9), respectively. Importantly, the prognostic value of this classifier was independent from both clinicopathological prognostic features and molecular subtypes in multivariate analysis, and existed in each of the nine datasets separately. The generation of 100,000 random gene signatures by a resampling scheme showed the non-random nature of our prognostic classifier.ConclusionThis study, the largest prognostic study of gene expression profiles in pancreatic carcinoma, reports a 25-gene signature associated with post-operative OS independently of classical factors and molecular subtypes. This classifier may help select patients with resectable disease for either immediate surgery (the LTS-like class) or neoadjuvant chemotherapy (the STS-like class). Its assessment in the current prospective trials of adjuvant and neoadjuvant chemotherapy trials is warranted, as well as the functional analysis of the classifier genes, which may provide new therapeutic targets.
Highlights
Pancreatic carcinoma is one of the most lethal human cancers
A major challenge is to improve the imperfect current prognostic factors to aid in therapeutic decision-making, notably regarding the decision for immediate surgery followed by chemotherapy or neoadjuvant chemotherapy followed by surgery
We have analyzed wholegenome expression profiles of 601 pancreatic carcinoma samples from operated patients, and identified a robust 25-gene classifier associated with post-operative Overall survival (OS) independently of classical prognostic factors and molecular subtypes
Summary
Pancreatic carcinoma is one of the most lethal human cancers. In patients with resectable tumors, surgery followed by adjuvant chemotherapy is the only curative treatment. Because of a strong metastatic propensity, neoadjuvant chemotherapy is being tested in randomized clinical trials. In this context, improving the selection of patients for immediate surgery or neoadjuvant chemotherapy is crucial, and high-throughput molecular analyses may help; the present study aims to address this. With a mortality rate close to the incidence rate (331,000 deaths worldwide for 338,000 new cases in 2012 [1]), pancreatic carcinoma is one of the most lethal human cancers. In patients with a resectable tumor, complete surgical removal followed by adjuvant chemotherapy is the only curative treatment. The mortality of surgery has decreased during the last 30 years, but its morbidity remains at approximately 50% [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.