Abstract

This paper presents an ultra-wideband single-chip radar transceiver MMIC around 240 GHz in a SiGe:C bipolar laboratory technology with an f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> of 240 GHz and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> of 380 GHz. The presented transceiver architecture consists of a fundamental 120 GHz VCO, two 240 GHz frequency doublers, a fundamental 240 GHz down-conversion mixer, a divide-by-four stage, a PLL-mixer and two on-chip patch antennas. The complete transceiver architecture is fully differential. The chip facilitates a -1 dBm peak output power (EIRP) at the transmit patch antenna and a tuning range of 61 GHz. The phase noise at 1 MHz offset is -84 dBc/Hz at 240 GHz (and better than -76 dBc/Hz over the full tuning range). The 240 GHz mixer offers a simulated noise figure below 17 dB, a simulated conversion gain of better than 5 dB, and an input refered compression point of -1.3 dBm. The results are achieved with a power consumption of 750 mW from a single 5 V supply.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call