Abstract

In this paper, we present the modeling and experimental validation of an efficient, compact, and high-isolation waveguide duplexer operating at 225 GHz. While duplexers based on ferrite circulators are key components of many monostatic radar systems, at W-band frequencies and above the performance of waveguide circulators rapidly deteriorates. The design presented here uses a ferrite-free duplexing concept based on transmitting and receiving in orthogonal circular polarizations. The circular polarization is efficiently generated in waveguide using a septum orthomode transducer polarizer, leading to a compact device with a single horn antenna. The complete duplexer is designed using efficient numerical algorithms, resulting in a fabricated device with a measured 10% fractional bandwidth, a return loss better than 20 dB, isolation of 30 dB, and insertion loss below 1 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call