Abstract

AbstractMulti-annual records of glacier surface meteorology and energy balance are necessary to resolve glacier–climate interactions but remain sparse, especially in the Southern Hemisphere. To address this, we present a record from the ablation zone of Brewster Glacier, New Zealand, between October 2010 and September 2012. The mean air temperature was 1.2°C at 1760 m a.s.l., with only a moderate temperature difference between the warmest and coldest months (∼8°C). Long-term annual precipitation was estimated to exceed 6000 mm a−1, with the majority of precipitation falling within a few degrees of the freezing level. The main melt season was between November and March (83% of annual ablation), but melt events occurred during all months. Annually, net radiation was positive (a source of energy) and supplied 64% of the melt energy, driven primarily by net shortwave radiation. Net longwave radiation was often positive during cloudy conditions in summer, demonstrating the radiative importance of clouds during melt. Turbulent sensible and latent heat fluxes were directed towards the surface in the summer months, accounting for just over a third of the energy for melt (34%). The energy gain associated with rainfall was small except during heavy events in summer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.