Abstract

Abstract A nocturnal maximum in rainfall and thunderstorm activity over the central Great Plains has been widely documented, but the mechanisms for the development of thunderstorms over that region at night are still not well understood. Elevated convection above a surface frontal boundary is one explanation, but this study shows that many thunderstorms form at night without the presence of an elevated frontal inversion or nearby surface boundary. This study documents convection initiation (CI) events at night over the central Great Plains from 1996 to 2015 during the months of April–July. Storm characteristics such as storm type, linear system orientation, initiation time and location, and others were documented. Once all of the cases were documented, surface data were examined to locate any nearby surface boundaries. The event’s initiation location relative to these boundaries (if a boundary existed) was documented. Two main initiation locations relative to a surface boundary were identified: on a surface boundary and on the cold side of a surface boundary; CI events also occur without any nearby surface boundary. There are many differences among the different nocturnal CI modes. For example, there appear to be two main peaks of initiation time at night: one early at night and one later at night. The later peak is likely due to the events that form without a nearby surface boundary. Finally, a case study of three nocturnal CI events that occurred during the Plains Elevated Convection At Night (PECAN) field project when there was no nearby surface boundary is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.