Abstract
This paper presents the design and application of a CMOS sub-1V voltage reference using a 2-transistor Self-Cascode MOSFET (SCM) structure able to get low power consumption, temperature compensation, and small area. An efficient design procedure applied to this simple topology relying on NMOS transistors with different threshold voltages allows attaining large immunity against bias current and supply voltage variations. The two transistors can operate in weak, moderate, or strong inversion making the design flexible in terms of area and power consumption. Implemented in a > 0.18mm standard CMOS technology, the circuit provides a 400mV voltage reference with a variation of ±0.18% from -20°C to 75°C (or less than 15ppm/°C), operates from 3.6V down to 800mV while biased with a 5nA resistor-less PTAT current source that varies ±30% over PVT, and consumes less than 20nA with an area of 0.01mm2. The same concept was used to create a temperature compensated voltage drop with regard to a monitored power supply voltage but using a 2-PMOS SCM structure with transistors of different threshold voltages. These two circuits were adopted as part of a Power Management (PM) system for RFID tag applications. The PM includes a LDO voltage regulator and a low voltage detector that require both the voltage reference and the low voltage monitor. The LDO regulated output voltage and the trip-point of the voltage detector vary +/-5.5% and +/-3.3%, respectively, over temperature, without trimming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.