Abstract

In this study, we propose a spatial prisoner's dilemma game model with a 2-stage strategy updating rule, and focus on the cooperation behavior of the system. In the first stage, i.e., the pre-learning stage, a focal player decides whether to update his strategy according to the pre-learning factor β and the payoff difference between himself and the average of his neighbors. If the player makes up his mind to update, he enters into the second stage, i.e., the learning stage, and adopts a strategy of a randomly selected neighbor according to the standard Fermi updating rule. The simulation results show that the cooperation level has a non-trivial dependence on the pre-learning factor. Generally, the cooperation frequency decreases as the pre-learning factor increases; but a high cooperation level can be obtained in the intermediate region of −3 < β < −1. We then give some explanations via studying the co-action of pre-learning and learning. Our results may sharpen the understanding of the influence of the strategy updating rule on evolutionary games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.