Abstract
The accurate, timely, and personalized prediction for future blood glucose (BG) levels is undoubtedly needed for further advancement of diabetes management technologies. Human inherent circadian rhythm and regular lifestyle resulting in similarity of daily glycemic dynamics play a positive role in the prediction of blood glucose. Inspired by the iterative learning control (ILC) method in the field of automatic control, a 2-dimensional (2-D) model framework is constructed to predict the future blood glucose levels by taking both the short-range information within a day (intra-day) and long-range information between days (inter-day) into account. In this framework, the radial basis function neural network was applied to capture nonlinear relationships in glycemic metabolism, that is, short-range temporal dependence and long-range contemporaneous dependence on previous days. We build models for each patient, and the models were tested on the in silico datasets at various prediction horizons (PHs). The learning model developed in the 2-D framework successfully increases the accuracy and reduces the delay of predictions. This modeling framework provides a new point of view for BG level prediction and contributes to the development of personalized glucose management, such as hypoglycemia warning and glycemic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.