Abstract

Pressurized liquefied gases such as carbon dioxide are transported at a pressure above their saturation pressure. Therefore, if a pipeline transporting this substance ruptures, an abrupt expansion occurs, causing the flashing of the fluid. Computational tools that predict how fast a depressurization develops, help to assess the consequences of potential pipeline rupture scenarios. This paper describes the development of a 2-D full-bore rupture decompression model to simulate the transient depressurization of a pipeline transporting pure liquefied CO2, using ANSYS Fluent as CFD software. The scope of work focuses on incorporating non-equilibrium phase transition, while addressing the calculation of properties for metastable liquid. Additionally, it includes the comparison of model predictions when implementing two thermodynamic approaches: the Peng-Robinson Equation of State (EoS), and correlations developed in this work based on the Span-Wagner EoS. It was found that the thermodynamic approach is deemed to have a predominant effect on the arrival time of the decompression wave front at different locations along the computational domain, while the mass transfer coefficient in the source terms (C) governs the phase transition and the pressure plateau representing this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.