Abstract
A 2-D beam scanning array antenna fed by a compact 16-way 2-D beamforming network (BFN) designed in Broadside Coupled Stripline (BCS) is addressed. The proposed 16-way 2-D BFN is formed by interconnecting two groups of 4x4 Butler Matrix (BM). Each group is composed of four compact 4x4 BMs. The critical point of the design is to propose a simple and compact 4x4 BM without crossover in BCS to achieve a better transmission coefficient of the 16-way 2-D BFN with reduced size of merely 0.8λ0 × 0.8λ0 × 0.04λ0. Moreover, the complexity of the interface connection between the 2-D BFN and the 4x4 patch array antenna is reduced by using probe feeding. The 16-way 2-D BFN is able to produce the phase shift of ±45°, and ±135° in x- and y- directions. The 2-D BFN is easily integrated under the 4x4 patch array to form a 2-D phased array capable of switching 16 beams in both elevation and azimuth directions. The area of the proposed 2-D beam scanning array antenna module has been significantly reduced to 2λ0 × 2λ0 × 0.04λ0. A prototype operating in the frequency range of 4-6GHz is fabricated and measured to validate the concept. The measurement results agree well with the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.