Abstract
A feedback vertex set of a graph is a subset of vertices that contains at least one vertex from every cycle in the graph. The problem considered is that of finding a minimum feedback vertex set given a weighted and undirected graph. We present a simple and efficient approximation algorithm with performance ratio of at most 2, improving previous best bounds for either weighted or unweighted cases of the problem. Any further improvement on this bound, matching the best constant factor known for the vertex cover problem, is deemed challenging. The approximation principle, underlying the algorithm, is based on a generalized form of the classical local ratio theorem, originally developed for approximation of the vertex cover problem, and a more flexible style of its application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.