Abstract

This paper presents an adaptive finite impulse response (FIR) equalizer with continuous-time wide-bandwidth delay line in CMOS 0.25-mum process for 2.5-Gb/s to 3.5-Gb/s data communications. To achieve wide bandwidth, fractionally spaced structure is used and an inverter with active-inductor load design is proposed as the delay cell of the tap delay line. Close loop adaptation of the fractionally spaced FIR equalizer is demonstrated using a low-power and area-efficient pulse extraction method as on-chip error detector. Measurement results show that the proposed adaptive equalizer achieves over 75% horizontal eye opening when the channel loss at the half-data-rate frequency varies from 4 dB to 21 dB at 2.5-Gb/s data rate. At 3.5-Gb/s data rate, the equalizer achieves 68% horizontal eye opening when the channel loss is about 9.3 dB at the half-data-rate frequency. The adaptive equalizer including the FIR filter and the error detector occupies 0.095 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2 </sup> die area and dissipates 95 mW at 2.5-Gb/s data rate from 2.5-V voltage supply

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call