Abstract

A non-nucleoside linker based upon the ligand 2,2'-bipyridine and ethylene glycol is prepared and placed into the backbone of a number of oligonucleo-tides. The bipyridine ligand is reacted with cis -dichloro bis(2,2'-bipyridyl) Ru(II) to generate the relatively substitutionally inert complex based upon the well-characterized tris -2,2'-bipyridyl Ru(II). The ruthenium-containing DNA complexes exhibited UV and fluorescence characteristics that are consistent with those previously observed for simple tris -2,2'-bipyridyl Ru(II) complexes. Oligonucleotides containing the ruthenium complex will form both DNA duplexes and triplexes with stabilities that are slightly better than those formed from simple tethered oligonucleotide probes in which the two hybridizing sequences are tethered by simple tri(ethylene glycol) or hexa(ethylene glycol) linkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.