Abstract

In this paper, we concern ourselves with the nonlinear Kadomtsev–Petviashvili equation (KP) with a competing dispersion effect. First we examine the integrability of governing equation via using the Painlevé analysis. We next reduce the KP equation to a one-dimensional with the help of Lie symmetry analysis (LSA). The KP equation reduces to an ODE by employing the Lie symmetry analysis. We formally derive bright, dark and singular soliton solutions of the model. Moreover, we investigate the stability of the corresponding dynamical system via using phase plane theory. Graphical representation of the obtained solitons and phase portrait are illustrated by using Maple software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.