Abstract

Hydrogen-Bromine (H2-Br2) fuel cells are considered to be one of the viable systems for large scale energy storage because of their high energy conversion efficiency, flexible operation and low capital cost. A 1D mathematical model is developed to serve as a theoretical guiding tool for the experimental studies. The impact of convective and diffusive transport and kinetic rate on the performance of a H2-Br2 fuel cell is shown in this study. Of the two flow designs (flow-by and flow-through) incorporated in this study, the flow-through design demonstrated better performance, which can be attributed to the dominant convective transport inside the porous electrode. Both experimental and simulated results validate that for the electrode properties and operating conditions selected, increasing the thickness of the Br2 electrode beyond a certain value does not have any effect on the discharge performance of the fuel cell. The reactant concentration available inside the Br2 electrode is greatly increased by operating the fuel cell at higher feed flow rates. Finally, the fuel cell configuration involving a thinner Br2 electrode with higher specific active surface area is found to be the optimal choice for generating high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.