Abstract

In this letter, we report the achievement of a high-performance lateral GaN Schottky barrier diode (SBD) on a silicon substrate with a low turn- ON voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{ \mathrm{ON}}$ </tex-math></inline-formula> ) of 0.35 V and tungsten (W) as the anode. Non-field-plated lateral GaN SBDs with the anode–cathode distances ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}_{\text {AC}}$ </tex-math></inline-formula> ) of 6, 10, 15, 20, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$25~\mu \text{m}$ </tex-math></inline-formula> demonstrate the reverse breakdown voltages of 0.6, 1.1, 1.25, 1.5, and 1.9 kV with the differential specific ON-resistances ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{\text{ON}, \text {sp}}$ </tex-math></inline-formula> ) of 0.38, 0.72, 1.23, 1.87, and 2.61 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{m}\Omega \cdot $ </tex-math></inline-formula> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively. The power figure-of-merit (FOM) is calculated to be <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {1}\times 10^{ {3}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {1.7}\times {10}^{ {3}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {1.3}\times {10}^{ {3}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {1.2}\times {10}^{ {3}}$ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ {1.4}\times {10}^{{3}}$ </tex-math></inline-formula> MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . To the best of our knowledge, this FOM of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${1.7}\times {10}^{{3}}$ </tex-math></inline-formula> MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> is the highest among all the lateral GaN SBDs on a Si substrate. Combined with the ~10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> current ON/OFF ratio at room temperature, the GaN SBD with the W anode shows a great promise for next-generation power electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call