Abstract

This letter presents a low noise amplifier (LNA) with a 3-dB gain bandwidth (3-dB BW) of 18–44 GHz in 65-nm CMOS technology. By deriving an analytical equation of input impedance, a co-design methodology for the first two stages of LNA that can simultaneously achieve broadband input matching and low noise figure (NF) is implemented. Weakly coupled asymmetric transformers that introduce a section of reverse parallel winding in the primary coil are designed to realize broadband interstage matching, optimize the gain flatness and boost the transconductance. The proposed LNA achieves a measured peak gain of 19.5 dB with a fractional 3-dB gain bandwidth (FBW) of 83.8%, covering the whole <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -band and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Ka$ </tex-math></inline-formula> -band. The measured NF is 2.6–3.5 dB from 20 to 43 GHz. To the best of our knowledge, the proposed LNA achieves the highest 3-dB BW and FBW with competitive NF. The measured input 1-dB gain compression point ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {IP}_{\mathrm {1\,dB}}$ </tex-math></inline-formula> ) ranges from −23 to −18.5 dBm over the entire 3-dB gain bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call