Abstract
A cognitive tri-band transmitter with forwarded clock using multi-band signaling and high-level digital signal modulations is presented for serial link application. The transmitter features learning an arbitrary channel response by sending a sweep of continuous wave, detecting power level, and accordingly adapts modulation scheme, data bandwidth and carrier frequency. The modulation scheme ranges from NRZ/QPSK to PAM-16/256-QAM. The highly re-configurable transmitter is capable of dealing with low-cost serial link cables/connectors or multi-drop buses with deep and narrow notches in frequency domain (e.g. 40dB loss at notches). The adaptive multi-band scheme mitigates equalization requirement and enhances the energy efficiency by avoiding frequency notches and utilizing the maximum available signal-to-noise ratio and channel bandwidth. The implemented transmitter consumes 14.7mW power and occupies 0.016mm2 in 28nm CMOS. It achieves a maximum data rate of 16Gb/s per differential pair and the most energy-efficient FoM (defined in Fig. 8) of 20.4 µW/Gb/s/dB considering channel condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.