Abstract

A high equivalent isotropic radiated power (EIRP) active phased array antenna is proposed for fifth-generation (5G) communication systems at 28 GHz. The numerical design, measurements of a fabricated prototype, and performance analysis are presented. The antenna design is based on the gapwaveguide technology and consists of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$16 \times 16$ </tex-math></inline-formula> single 45° slant-polarized elements. The proposed design uses a low complexity printed circuit board (PCB) structure with only six layers, i.e., a half of the existing wideband solutions. The array antenna incorporates up/downconverter integrated circuits (UDCs) and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1 \times 4$ </tex-math></inline-formula> transceiver beamformer integrated circuits (BFICs). Moreover, a compact and highly efficient transition at the end of each channel of the BFICs has been designed to interconnect the antenna elements with the PCB. The antenna’s front-end loss, which includes the feed line, mismatch, and ohmic losses, is only 1.3 dB. The array covers the scanning range of ±60° in the azimuth plane and ±10° in the elevation plane. The <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{11} &lt; -10$ </tex-math></inline-formula> dB frequency bandwidth is from 26.5 to 29.5 GHz. The maximum EIRP of the antenna is 65.5 dBm at saturation point. The presented design offers a compact, robust, and low-loss performance solution meeting the high transmission power requirements of 5G applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call