Abstract

A 1.1 Mb embedded DRAM macro (eDRAM), for next-generation IBM SOI processors, employs 14 nm FinFET logic technology with $\hbox{0.0174}~\mu\hbox{m}^{2}$ deep-trench capacitor cell. A Gated-feedback sense amplifier enables a high voltage gain of a power-gated inverter at mid-level input voltage, while supporting 66 cells per local bit-line. A dynamic-and-gate-thin-oxide word-line driver that tracks standard logic process variation improves the eDRAM array performance with reduced area. The 1.1 $~$ Mb macro composed of 8 $\times$ 2 72 Kb subarrays is organized with a center interface block architecture, allowing 1 ns access latency and 1 ns bank interleaving operation using two banks, each having 2 ns random access cycle. 5 GHz operation has been demonstrated in a system prototype, which includes 6 instances of 1.1 Mb eDRAM macros, integrated with an array-built-in-self-test engine, phase-locked loop (PLL), and word-line high and word-line low voltage generators. The advantage of the 14 nm FinFET array over the 22 nm array was confirmed using direct tester control of the 1.1 Mb eDRAM macros integrated in 16 Mb inline monitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.