Abstract
Electrical stimulation is an important technique for modulating the functions of the nervous system through electrical stimulus. To implement a more competitive prototype that can tackle the domain-specific difficulties of existing electrical stimulators, three key techniques are proposed in this work. Firstly, a load-adaptive power saving technique called over-voltage detection is implemented to automatically adjust the supply voltage. Secondly, redundant digital calibration (RDC) is proposed to improve current accuracy and ensure safety during long-term electrical stimulation without costing too much circuit area and power. Thirdly, a flexible waveform generator is designed to provide arbitrary stimulus waveforms for particular applications. Measurement results show the stimulator can adjust the supply voltage from 12 V to 100 V automatically, and the measured effective resolution of the stimulation current reaches 14 bits in a full range of 6.5 mA. Without applying charge balancing techniques, the average mismatch between the cathodic and anodic current pulses in biphasic stimulus is 0.0427%. The proposed electrical stimulator can generate arbitrary stimulus waveforms, including sine, triangle, rectangle, etc., and it is supposed to be competitive for implantable and wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.