Abstract

NMR relaxation experiments often require site-specific isotopic enrichment schemes in order to allow for quantitative interpretation. Here we describe a new labeling scheme for site-specific (13)C-(1)H enrichment of a single ortho position of aromatic amino acid side chains in an otherwise perdeuterated background by employing a combination of [4-(13)C]erythrose and deuterated pyruvate during growth on deuterium oxide. This labeling scheme largely eliminates undesired contributions to (13)C relaxation and greatly simplifies the fitting of relaxation data using the Lipari-Szabo model-free formalism. This approach is illustrated with calcium-saturated vertebrate calmodulin and oxidized flavodoxin from Cyanobacterium anabaena . Analysis of (13)C relaxation in the aromatic groups of calcium-saturated calmodulin indicates a wide range of motion in the subnanosecond time regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.