Abstract

Owing to its unique capability to sustain computation progress over power outages, a nonvolatile processor (NVP) is promising for energy-harvesting-powered Internet-of-Things devices. However, the widespread application of NVP is continually blocked by the system integration issues and the configuration overheads of peripheral devices. This paper presents a nonvolatile system-on-chip (NVSoC) with improved integration level, power management flexibility, and system wake-up speed. An on-chip power management subsystem is designed to minimize the number of external components while supporting versatile power policies. And a direct peripheral restore architecture is outlined, which enables a fast and parallel re-configuration of peripheral devices after the resumption of power supply. A test chip is fabricated in a 130-nm ferroelectric-CMOS process with 22.09-mm2 area. Measurement results show 6 $\times $ higher data throughput as compared with a conventional NVP when facing power failures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call