Abstract

We study the chemical complexity towards the central parts of the starburst galaxy M82, and investigate the role of certain molecules as tracers of the physical processes in the galaxy circumnuclear region. We carried out a spectral line survey with the IRAM-30m telescope towards the northeastern molecular lobe of M82. It covers the frequency range between 129.8 GHz and 175.0 GHz in the 2 mm atmospheric window, and between 241.0 GHz and 260.0 GHz in the 1.3 mm atmospheric window. Sixty-nine spectral features corresponding to 18 different molecular species are identified. In addition, three hydrogen recombination lines are detected. The species NO, H2S, H2CS, NH2CN, and CH3CN are detected for the first time in this galaxy. Assuming local thermodynamic equilibrium, we determine the column densities of all the detected molecules. We also calculated upper limits to the column densities of fourteen other important, but undetected, molecules, such as SiO, HNCO, or OCS. We compare the chemical composition of the two starburst galaxies M82 and NGC253. This comparison enables us to establish the chemical differences between the products of the strong photon-dominated regions (PDRs) driving the heating in M82, and the large-scale shocks that influence the properties of the molecular clouds in the nucleus of NGC253. Overall, both sources have different chemical compositions. Some key molecules highlight the different physical processes dominating both central regions. Examples include CH3CCH, c-C3H2, or CO+, the abundances of which are clearly higher in M82 than in NGC253, pointing at photodissociating regions. On the other hand, species such as CH2NH, NS, SiO, and HOCO+ have abundances of up to one order of magnitude higher in NGC253 than in M82.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.