Abstract

An electrical impedance tomography (EIT) system based on frequency division multiplexing (FDM) is proposed for real-time lung physiological imaging. The FDM technique allows the integration of 13 dedicated voltage sensing channels by combining data on-chip and sharing of ADC to alleviate area penalty caused by multi-channel. The EIT system-on-chip (SoC) is of the following features. 1) Early I/Q demodulation to relax the bandwidth requirement of analog front end and minimize the impact of motion artifacts and dc electrode offset. 2) Eliminates the need of adaptive gain control with constant inverted "U-shape" gain configuration to compensate amplitude variations across all channels. 3) FDM to combine 13 pairs of I/Q signals into two data streams for quantization using only two ΔΣ modulators. 4) Batch data recovery by Blackman window corrected fast Fourier transform without any digital filtering involved. 5) Lowest power consumption and smallest area occupation per channel reported to date. The EIT SoC occupies an area of 11.28mm2 in 130-nm CMOS technology with a total power consumption of 1.53mW under 1-V power supply. As a result, it generates lung EIT images at up to five frames per second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.