Abstract

To design noise-shaping successive approximation register (NS-SAR) analog-to-digital converters (ADCs) with high resolution and good power efficiency, two key bottlenecks need to be addressed. One is to realize a high-order loop filter with low circuit overhead, and the other is to mitigate the thermal noise. This article presents an NS-SAR ADC that synergistically addresses both challenges. To achieve high-order efficiency, it proposes an innovative error feedback-cascaded integrator feedforward (EF-CIFF) structure that realizes third-order noise shaping using only a single amplifier. It combines the merits of both structures, showing improved robustness, and is free of dc offset concern. On reducing the kT/C noise, this work features a sampling kT/C noise cancellation (SNC) technique that reuses the native hardware of the EF-CIFF structure. An open-loop self-quenching floating-inverter dynamic amplifier (FIDA) is used to support all amplification with low noise and power. Prototyped in 65-nm CMOS, this work achieves 84.8-dB signal-to-noise-distortion ratio (SNDR) with 625-kHz bandwidth (BW) (OSR = 8) and 119 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> , leading to 182-dB Schreier Figure of Merit (FoM). It uses only 0.8-pF input capacitance, which is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$5\times $ </tex-math></inline-formula> smaller than prior NS-SAR ADCs with similar oversampling ratio (OSR) and SNDR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call