Abstract

Superoxide anion (O2.- ), a short-lived, highly active reactive oxygen species, participates in many physiological processes. This work reports the design of a chemiluminescent probe (CLO) based on 1,2-dioxetane-phenol with a selective and sensitive response to O2.- . The CLO consisted of a 1,2-dioxetane-phenol as a chemiluminophore core bearing a trifluoromethanesulfonate (Tf) moiety and methyl acrylate group. Upon reacting with O2.- , the Tf was specifically cleaved from the CLO, resulting in chemiluminescence generation. The CLO emits chemiluminescence at 450-650 nm (λmax =540 nm), representing visible and red chemiluminescent molecules, responsive to O2.- . The CLO processes high sensitivity (Limit of detection=66 nM) and selectivity for O2.- with and has been applied to track O2.- fluctuations in living cells and animals. In addition, CLO successfully detected and visualized O2.- -related biochemical processes, making it promising as an important imaging tool for studying redox in biology and medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call