Abstract

A 12-bit nonlinear digital-to-analog converter (DAC) was fabricated in a 0.35-mum SOI CMOS process. The nonlinear DAC can implement a piecewise-linear approximation to a sine function and results in significant reduction of complexity and power dissipation when used in direct digital frequency synthesizers (DDFSs). The DDFS look-up table only needs to store offset and gain values for each segment. The look-up table size can be reduced from 11K bits to 544 bits for a 12-bit DDFS with 72 dB spurious-free dynamic range (SFDR). The nonlinear DAC consists of a 12-bit binary-weighted offset DAC and a multiplying DAC. The DACs use a current steering architecture for high-speed operation and the 5 most significant bits of the offset DAC are unary encoded to reduce glitches. The multiplying DAC consists of binary-weighted current sources switched by the partial products of the inputs. Test results show that the DAC has 12-bit accuracy after digital trimming, operates up to 600 MS/s and provides differential outputs of 0.5 V into 50 Omega loads. The SFDR is over 60 dBc below 20 MHz with a maximum of 72 dBc. Radiation tests show the nonlinear DAC can tolerate a total ionizing dose of 200 Krad Si.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.