Abstract

Abstract. The Mount Johns (MJ) ice core (79°55′ S; 94°23′ W) was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers approximately 125 years (1883–2008), showing marked seasonal variability. Trace element concentrations in 2137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations at the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and secondary northeasterly transport in the summer. During summer months, the trajectories present slow-moving (short) transport and are more locally influenced than in other seasons. Finally, our reanalysis correlations with trace element suggest that marine-derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies. The results show that seasonal elemental concentration maxima in sea salt elements correlate well with the sea ice concentration winter maxima in the west Amundsen and Ross seas. Lastly, we observed an increased concentration of marine aerosols when sea surface temperature decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.