Abstract

We present here the first high-resolution pollen record of vegetation response to interactions of hurricane and fire disturbances over the past 1200 yr from a small lake in Alabama on the Gulf of Mexico coast. The paleotempestological record inferred from the overwash sand layers suggests that the Alabama coast was directly struck by Saffir–Simpson category 4 or 5 hurricanes twice during the last 1200 yr, around 1170 and 860 cal yr BP, suggesting an annual landfall probability of 0.17% for these intense hurricanes. The charcoal data suggest that intense fires occurred after each of these hurricanes. The pollen data suggest that populations of halophytic plants (Chenopodiaceae) and heliophytic shrubs ( Myrica) expanded after the hurricane strikes, probably due to saltwater intrusion into the marshes and soil salinization caused by overwash processes. Populations of pines ( Pinus sp.) decreased significantly after each intense hurricane and the ensuing intense fire, suggesting that repeated hurricane–fire interactions resulted in high tree mortality and probably impeded recruitment and recovery. Our data support the hypothesis that the likelihood and intensity of fire increased significantly after a major hurricane, producing responses by vegetation that are more complex and unpredictable than if the disturbance agents were acting singly and independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call