Abstract

This paper presents a 12-bit branching Time-to-Digital converter (TDC) fabricated in a 40 nm CMOS technology. It composes of a 6-bit coarse counter TDC, and a 6-bit fine TDC. The fine TDC utilizes a proposed branching technique to interpolate between the phases of a 16-stage gated ring oscillator, increasing its number of phases from 16 to 64. Therefore, the TDC resolution is improved to be 4 times finer. The TDC incorporates fully digital based resolution tuning capability that enables its resolution to be more stable over PVT variations. Measurement results show that the resolution tuning reduces the resolution variation by 92.3% over a temperature range of − 40 to 125 °C. However, the simple resolution tuning method causes the TDC to have a relatively large resolution of 36.2 ps. The trade-offs between TDC resolution, yield, and scalability are discussed. The proposed TDC uses simple gated inverters based samplers instead of conventional arbiters to reduce power and area consumption. In addition, power gating features of the proposed TDC enable a low power consumption of 275 µW at a sampling rate of 5 MS/s. Without any linearity calibrations, the TDC DNL, INL, single-shot precision, and figure-of-merit are measured to be 1.30 LSB, 3.61 LSB, 0.75 LSB, and 61.9 fJ/conv.-step, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.