Abstract

A 12 bit 200 MS/s analog-to-digital converter (ADC) applies techniques of zero-crossing-based circuits as a replacement for high-gain high-speed op-amps. High accuracy in the residue amplifier is achieved by using a coarse phase in ZCBC followed by a level-shifting capacitor for fine phase. Sub-ADC flash comparators are strobed immediately after the coarse phase to achieve a high sampling rate. The systematic offset voltage between the coarse and fine phase manifests itself as systematic offset in the sub-ADC comparators. This offset is caused by the coarse phase undershoot and the fine phase overshoot. In this work, the offset is cancelled with background calibration by residue range correction circuits in the following stage's sub-ADC. In addition, the sub-ADC's random comparator offset is calibrated with a discrete-time charge-pump based background calibration technique. The reference buffer, bias circuitry, and digital error correction circuits are all integrated on a single chip. The ADC occupies an area of 0.282 mm $^{2}$ in 55 nm CMOS technology and dissipates 30.7 mW. It achieves 64.6 dB SNDR and 82.9 dBc SFDR at 200 MS/s for a FOM of 111 fJ/conversion-step. The SNDR degrades gracefully above the designed sampling frequency to 62.9 dB at 250 MS/s, and remains above 50 dB at 300 MS/s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call