Abstract

Single-photon detectors are ubiquitous in quantum information science and quantum sensing. They are key enabling technologies for numerous scientific discoveries and fundamental tests of quantum optics. Photon-number-revolving detectors are the ultimate measurement tool of light; however, few detectors so far can provide high-fidelity photon number resolution at few-photon levels. Here we demonstrate an on-chip detector that can resolve up to 100 photons by spatiotemporally multiplexing an array of superconducting nanowires along a single optical waveguide. The unparalleled photon number resolution paired with the high-speed response exclusively allows us to unveil the quantum photon statistics of a true thermal light source at an unprecedented level, which is realized by direct measurement of the higher-order correlation function g(N) (with values of N up to 15), observation of photon-subtraction-induced photon number enhancement and quantum-limited state discrimination against a coherent light source. Our detector provides a viable route towards various important applications, including photonic quantum computation and quantum metrology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call