Abstract

As the prevalence of diabetes steadily increases, the burden of diabetic kidney disease (DKD) is also intensifying. In response, we have utilized a 10-year diabetes cohort from our medical center to train machine learning-based models for predicting DKD and interpreting relevant factors. Employing a large dataset from 73,101 hospitalized type 2 diabetes patients at The First Affiliated Hospital of Zhengzhou University, we analyzed demographic and medication data. Machine learning models, including XGBoost, CatBoost, LightGBM, Random Forest, AdaBoost, GBDT (gradient boosting decision tree), and SGD (stochastic gradient descent), were trained on these data, focusing on interpretability by SHAP. SHAP explains the output of the models by assigning an importance value to each feature for a particular prediction, enabling a clear understanding of how individual features influence the prediction outcomes. The XGBoost model achieved an area under the curve (AUC) of 0.95 and an area under the precision-recall curve (AUPR) of 0.76, while CatBoost recorded an AUC of 0.97 and an AUPR of 0.84. These results underscore the effectiveness of these models in predicting DKD in patients with type 2 diabetes. This study provides a comprehensive approach for predicting DKD in patients with type 2 diabetes, employing machine learning techniques. The findings are crucial for the early detection and intervention of DKD, offering a roadmap for future research and healthcare strategies in diabetes management. Additionally, the presence of non-diabetic kidney diseases and diabetes with complications was identified as significant factors in the development of DKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.