Abstract

This paper presents design of an isolated high-step-down DC-DC converter based on a class-DE power stage, operating at a 10 MHz switching frequency using enhancement mode Gallium Nitride (GaN) transistors. The converter operating principles are discussed, and the power stage design rated for 20 W is presented for a step-down from 200-300 V to 0-28 V. Commercially available magnetic materials were explored and the high-frequency (HF) resonant inductor and transformer designs using a low-loss Fair-Rite type 67 material are presented. Finite element simulations have been performed to estimate the AC resistances of magnetics at 10 MHz. Experimental results are presented at 12 W, 254 V to 22 V on a laboratory prototype operating at 10 MHz. At 20 W the experimental prototype achieved an efficiency of 85.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.