Abstract
A modified RSD algorithm has been implemented in a switched-current pipelined A/D converter. The offset insensitivity of the RSD Converter reduces the effect of several nonidealities proper to current copier cells. Moreover, the benefits resulting from the large tolerances inherent to the RSD algorithm and the pipelined architecture result in an improved conversion rate. Measurements on a first prototype give an integral nonlinearity error less than 0.8 LSB for 10-bit accuracy. Power dissipation is 20 mW and silicon area is 2.5 mm/sup 2/. The measured sampling rate is 550 kS/s. It is an improvement by a factor of twenty compared to known equivalent CMOS switched-current converters. It is nevertheless still well below the predicted conversion rate of 4.5 MHz, which should be obtained once this A/D converter is integrated into an analog front-end. Full compatibility with standard digital technologies makes this kind of converter attractive for low power, medium-fast converters with 10-bit accuracy.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.