Abstract

This paper describes a 10-bit 205-MS/s pipeline analog-to-digital converter (ADC) for flat panel display applications with the techniques to alleviate the design limitations in the deep-submicron CMOS process. The switched source follower combined with a resistor-switch ladder eliminates the sampling switches and achieves high linearity for a large single-ended input signal. Multistage amplifiers adopting the complementary common-source topology increase the output swing range with lower transconductance variation and reduce the power consumption. The supply voltage for the analog blocks is provided by the low drop-out regulator for a high power-supply rejection ratio (PSRR) under the noisy operation environment. The pipeline stages of the ADC are optimized in the aspect of power consumption through the iterated calculation of the sampling capacitance and transconductance. The ADC occupies an active area of 1.0 mm2 in a 90-nm CMOS process and achieves a 53-dB PSRR for a 100-MHz noise tone with the regulator and a 55.2-dB signal-to-noise-and-distortion ratio for a 30-MHz 1.0-VPP single-ended input at 205 MS/s. The ADC core dissipates 40 mW from a 1.0-V nonregulated supply voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.