Abstract

A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+−X1∑+ transition of CuH has been presented. The CuH molecule, as well as its deuterated isotopologue CuD, are produced in a supersonic jet expansion by discharging H2 (or D2) and Ar gas mixtures using two copper needles. Different profiles of relative line intensities are observed between the measured LIF and CRD spectra, providing an experimental evidence for the predissociation behavior in the A1∑+ state of CuH. The lifetimes of individual upper rotational levels are measured by LIF, in which the J′-dependent predissociation rates are obtained. Based on the previous theoretical calculations, a predissociation mechanism is concluded due to the strong spin-orbit coupling between the A1∑+ state and the lowest-lying triplet 3∑+ state, and a tunneling effect may also be involved in the predissociation. Similar experiments are also performed for CuD, showing that the A1∑+ state of CuD does not undergo a predissociation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call