Abstract

This paper proposes a new current-source gate drive circuit for a synchronous buck converter. The proposed driver can drive two MOSFETs independently with different drive currents for optimal design. For the control MOSFET, the optimal design involves a tradeoff between switching loss reduction and drive circuit loss; while for the synchronous-rectifier MOSFET, the optimal design involves a tradeoff between body diode conduction loss and drive circuit loss. Furthermore, the new drive circuit can achieve: 1) significant switching loss reduction; 2) gate energy recovery and high gate drive voltage to reduce R DS(ON) conduction losses; 3) reduced conduction loss and reverse recovery loss of the body diode; and 4) zero-voltage switching of all the drive switches. The improved driver using integrated inductors is presented with multiphase buck voltage regulators (VRs) to reduce the number of magnetic cores and the core loss. The experimental results prove that a significant efficiency improvement has been achieved. At 1.5-V output, the new driver improves the efficiency from 84% using a conventional driver to 87.3% at 20 A, and at 30 A, from 79.4% to 82.8%. Overall, the new driver approach is attractive from the standpoints of both performance and cost-effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.