Abstract
Abstract. Surface soil moisture (SSM) is crucial for understanding the hydrological process of our earth surface. The passive microwave (PM) technique has long been the primary tool for estimating global SSM from the view of satellites, while the coarse resolution (usually >∼10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to the public that meet the qualification of 1 km resolution and daily revisit cycles under all-weather conditions. In this study, we developed one such SSM product in China with all these characteristics. The product was generated through downscaling the AMSR-E/AMSR-2-based (Advance Microwave Scanning Radiometer of the Earth Observing System and its successor) SSM at 36 km, covering all on-orbit times of the two radiometers during 2003–2019. MODIS optical reflectance data and daily thermal-infrared land surface temperature (LST) that had been gap-filled for cloudy conditions were the primary data inputs of the downscaling model so that the “all-weather” quality was achieved for the 1 km SSM. Daily images from this developed SSM product have quasi-complete coverage over the country during April–September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations through a specifically developed sub-model for filling the gap between seams of neighboring PM swaths during the downscaling procedure. The product compares well against in situ soil moisture measurements from 2000+ meteorological stations, indicated by station averages of the unbiased root mean square difference (RMSD) ranging from 0.052 to 0.059 vol vol−1. Moreover, the evaluation results also show that the developed product outperforms the SMAP (Soil Moisture Active Passive) and Sentinel (active–passive microwave) combined SSM product at 1 km, with a correlation coefficient of 0.55 achieved against that of 0.40 for the latter product. This indicates the new product has great potential to be used by the hydrological community, by the agricultural industry, and for water resource and environment management. The new product is available for download at https://doi.org/10.11888/Hydro.tpdc.271762 (Song and Zhang, 2021b).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.