Abstract

An asynchronous 6 bit 1 GS/s ADC is achieved by time interleaving two ADCs based on the binary successive approximation (SA) algorithm using a series capacitive ladder. The semi-closed loop asynchronous technique eliminates the high internal clocks and significantly speeds up the SA algorithm. A key feature to reduce the power in this design involves relaxing the comparator requirements using an error correction technique, which can be viewed as an extension of the SA algorithm to remove degradation due to metastability. Fabricated in 65 nm CMOS with an active area of 0.11 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , it achieves a peak SNDR of 31.5 dB at 1GS/s sampling rate and has a total power consumption of 6.7 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.