Abstract

This paper demonstrates that a 1-d.o.f. planar ball-throwing robot has the capability of controlling three kinematic variables of a ball independently: translational velocity, angular velocity and direction. The throwing motion is modeled using two underactuated contact dynamics, called a finger-link contact model and a fingertip contact model, with a unidirectional transition from one model to another. A combination of a preliminary global search method and a search algorithm based on a simulated annealing algorithm provides joint torque commands for this highly nonlinear system. An experimental system with a 1-d.o.f. planer manipulator has been developed that throws a disk (ball) in a frictionless plane. The experimental results confirm the validity of the contact models and the feasibility of independent control of the three kinematic variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call