Abstract

We present high-performance simulations of global seismic wave propagation with an unprecedented accuracy of 1.2 s seismic period for a realistic three-dimensional Earth model using the spectral element method on the K computer. Our seismic simulations use a total of 665.2 billion grid points and resolve 1.8 trillion degrees of freedom. To realize these large-scale computations, we optimize a widely used community software code to efficiently address all hardware parallelization, especially thread-level parallelization to solve the bottleneck of memory usage for coarse-grained parallelization. The new code exhibits excellent strong scaling for the time stepping loop, that is, parallel efficiency on 82,134 nodes relative to 36,504 nodes is 99.54%. Sustained performance of these computations on the K computer is 1.24 petaflops, which is 11.84% of its peak performance. The obtained seismograms with an accuracy of 1.2 s for the entire globe should help us to better understand rupture mechanisms of devastating earthquakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.