Abstract

The 1.78 Ga Xiong'er Volcanic Province (XVP) and coeval North China giant mafic Dyke Swarm (NCDS) are the most important magmatic events occurring after the amalgamation of the North China craton (NCC). The XVP consists of 3–7 km of extrusive volcanics and some feeder dykes/sills located along the southern margin of the NCC and extending over an area > 0.06 M km 2. Compositions vary from basalt to rhyolite, but are predominantly intermediate in terms of silica content. There are also minor sedimentary intercalations and pyroclastic units. The sedimentary interlayers indicate an environment changing from continental-facies to oceanic-facies up-section. The XVP is characterized by fractional crystallization from an EM I type mantle source, and both continental arc (Andean-type) and rift environments have been proposed. The NCDS is widespread in the central NCC with an outcrop area > 0.1 M km 2, and are exposed at variable depths up to 20 km (deepest in the north). Dyke compositions vary from basalt to andesite and dacite, but are dominantly mafic, and comprise two series of magmatism. Previous studies revealed that the NCDS recorded assimilation and fractional crystallization of an EM I type magma source, with a minor DM contribution in the younger magmas. Both syn-collisional and intra-continental anorogenic environments have been proposed. Spatial and petrogenic correlations suggest a cogenetic relationship between the NCDS and XVP, and considered together, they define a Large Igneous Province (LIP) of > 0.1 M km 2 in area and > 0.1 M km 3 in volume, which is also notable for its continuous compositional range from mafic to felsic (with no gap at intermediate compositions). The petrology is explained by a common magma source that undergoes a silica-poor and iron-enriched fractionation trend at depth followed by a silica-rich and iron-poor fractionation trend in shallow-level magma conduits (dykes) and surface lavas. A mantle plume is favored as the cause of this ∼ 1.78 Ga North China LIP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call