Abstract

A low-voltage opamp-reset switching technique (ORST) that does not use clock boosting, bootstrapping, switched-opamp (SO), or threshold voltage scaling is presented. This technique greatly reduces device reliability issues. Unlike the SO technique, the opamps stay active for all clock phases and, therefore, the ORST is suitable for high-speed applications. This new switching technique is applied to the design of a 10-bit 25-MS/s pipelined analog-to-digital converter (ADC). The prototype ADC was fabricated in a 0.35-/spl mu/m CMOS process and demonstrates 55-dB signal-to-noise ratio, 55-dB spurious-free dynamic range, and 48-dB signal-to-noise-plus-distortion ratio performance with a 1.4-V power supply. The total power consumption is 21 mW. The ADC's minimum operating power supply is 1.3 V (|V/sub TH,P/| = 0.9 V) and the maximum operating frequency is 32 MS/s. The ORST is fully compatible with future low-voltage submicron CMOS processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.